Skip to Content

1. 3x+2x3x + 2x āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 5x5x ✅
b) 6x6x
c) 5x25x^2
d) 6x26x^2

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 5x5x
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: āϏāĻŽāϜāĻžāϤ⧀āϝāĻŧ āĻĒāĻĻ⧇āϰ āϝ⧋āϗ⧇ 3x+2x=5x3x + 2x = 5x

2. 7y−3y7y - 3y āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 4y4y ✅
b) 10y10y
c) 4y24y^2
d) 21y21y

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 4y4y
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: āϏāĻŽāϜāĻžāϤ⧀āϝāĻŧ āĻĒāĻĻ⧇āϰ āĻŦāĻŋāϝāĻŧā§‹āϗ⧇ 7y−3y=4y7y - 3y = 4y

3. 5a2+3a25a^2 + 3a^2 āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 8a8a
b) 8a28a^2 ✅
c) 15a215a^2
d) 8a48a^4

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: b) 8a28a^2
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: āϏāĻŽāϜāĻžāϤ⧀āϝāĻŧ āĻĒāĻĻ⧇āϰ āϝ⧋āϗ⧇ 5a2+3a2=8a25a^2 + 3a^2 = 8a^2

4. 2xy+5xy−3xy2xy + 5xy - 3xy āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 4xy4xy ✅
b) 10xy10xy
c) 6xy6xy
d) 00

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 4xy4xy
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 2xy+5xy−3xy=(2+5−3)xy=4xy2xy + 5xy - 3xy = (2 + 5 - 3)xy = 4xy

5. 4p2−4p24p^2 - 4p^2 āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 8p28p^2
b) 00 ✅
c) 4p24p^2
d) 16p416p^4

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: b) 00
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 4p2−4p2=04p^2 - 4p^2 = 0

6. (3x+2y)+(x−y)(3x + 2y) + (x - y) āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 4x+y4x + y ✅
b) 4x+3y4x + 3y
c) 2x+y2x + y
d) 4x−y4x - y

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 4x+y4x + y
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: (3x+2y)+(x−y)=3x+2y+x−y=4x+y(3x + 2y) + (x - y) = 3x + 2y + x - y = 4x + y

7. (5a+3b)−(2a+b)(5a + 3b) - (2a + b) āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 3a+2b3a + 2b ✅
b) 7a+4b7a + 4b
c) 3a+4b3a + 4b
d) 7a+2b7a + 2b

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 3a+2b3a + 2b
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: (5a+3b)−(2a+b)=5a+3b−2a−b=3a+2b(5a + 3b) - (2a + b) = 5a + 3b - 2a - b = 3a + 2b

8. 2x2+3x−12x^2 + 3x - 1 āϰāĻžāĻļāĻŋāϤ⧇ āĻ•āϝāĻŧāϟāĻŋ āĻĒāĻĻ āφāϛ⧇?
a) 22āϟāĻŋ
b) 33āϟāĻŋ ✅
c) 44āϟāĻŋ
d) 55āϟāĻŋ

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: b) 33āϟāĻŋ
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: āĻĒāĻĻāϗ⧁āϞ⧋ āĻšāϞ: 2x22x^2, 3x3x, −1-1 āĻ…āĻ°ā§āĻĨāĻžā§Ž ā§ŠāϟāĻŋ āĻĒāĻĻ

9. 7xy7xy āĻĒāĻĻ⧇ xx āĻāϰ āϏāĻšāĻ— āĻ•āϤ?
a) 77
b) 7y7y ✅
c) yy
d) xyxy

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: b) 7y7y
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 7xy7xy āĻĒāĻĻ⧇ xx āĻāϰ āϏāĻšāĻ— āĻšāϞ 7y7y

10. 3a2+2a−53a^2 + 2a - 5 āϰāĻžāĻļāĻŋāϰ āϘāĻžāϤ āĻ•āϤ?
a) 11
b) 22 ✅
c) 33
d) 55

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: b) 22
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āϘāĻžāϤ a2a^2 āĻāϰ āϘāĻžāϤ 22, āϤāĻžāχ āϰāĻžāĻļāĻŋāϰ āϘāĻžāϤ 22

11. (4m+3n)+(2m−5n)+(m+n)(4m + 3n) + (2m - 5n) + (m + n) āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 7m−n7m - n ✅
b) 6m−2n6m - 2n
c) 7m+n7m + n
d) 5m−n5m - n

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 7m−n7m - n
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 4m+3n+2m−5n+m+n=7m−n4m + 3n + 2m - 5n + m + n = 7m - n

12. (6p+4q)−(3p−2q)(6p + 4q) - (3p - 2q) āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 3p+2q3p + 2q
b) 3p+6q3p + 6q ✅
c) 9p+2q9p + 2q
d) 3p−6q3p - 6q

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: b) 3p+6q3p + 6q
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: (6p+4q)−(3p−2q)=6p+4q−3p+2q=3p+6q(6p + 4q) - (3p - 2q) = 6p + 4q - 3p + 2q = 3p + 6q

13. 5x2−3x+25x^2 - 3x + 2 āϰāĻžāĻļāĻŋāϤ⧇ āĻ§ā§āϰ⧁āĻŦāĻ• āĻĒāĻĻ āϕ⧋āύāϟāĻŋ?
a) 5x25x^2
b) −3x-3x
c) 22 ✅
d) 55

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: c) 22
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: āϝ⧇ āĻĒāĻĻ⧇ āϕ⧋āύ⧋ āϚāϞāĻ• āύ⧇āχ āϏ⧇āϟāĻŋ āĻ§ā§āϰ⧁āĻŦāĻ• āĻĒāĻĻ, āĻāĻ–āĻžāύ⧇ 22

14. 3ab3ab āĻāĻŦāĻ‚ −5ab-5ab āϕ⧋āύ āϧāϰāύ⧇āϰ āĻĒāĻĻ?
a) āϏāĻŽāϜāĻžāϤ⧀āϝāĻŧ āĻĒāĻĻ âœ…
b) āĻ…āϏāĻŽāϜāĻžāϤ⧀āϝāĻŧ āĻĒāĻĻ
c) āĻ§ā§āϰ⧁āĻŦāĻ• āĻĒāĻĻ
d) āĻŽāĻŋāĻļā§āϰ āĻĒāĻĻ

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) āϏāĻŽāϜāĻžāϤ⧀āϝāĻŧ āĻĒāĻĻ
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: āĻāĻ•āχ āϚāϞāĻ• āĻ“ āϘāĻžāϤ āĻĨāĻžāĻ•āĻžāϝāĻŧ āĻāϰāĻž āϏāĻŽāϜāĻžāϤ⧀āϝāĻŧ āĻĒāĻĻ

15. (2x2+3x−1)+(x2−2x+4)(2x^2 + 3x - 1) + (x^2 - 2x + 4) āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 3x2+x+33x^2 + x + 3 ✅
b) 3x2+5x+33x^2 + 5x + 3
c) x2+x+3x^2 + x + 3
d) 3x2−x+33x^2 - x + 3

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 3x2+x+33x^2 + x + 3
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 2x2+3x−1+x2−2x+4=3x2+x+32x^2 + 3x - 1 + x^2 - 2x + 4 = 3x^2 + x + 3

16. (4y2−3y+2)−(2y2+y−1)(4y^2 - 3y + 2) - (2y^2 + y - 1) āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 2y2−4y+32y^2 - 4y + 3 ✅
b) 2y2−2y+12y^2 - 2y + 1
c) 6y2−2y+16y^2 - 2y + 1
d) 2y2+4y+32y^2 + 4y + 3

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 2y2−4y+32y^2 - 4y + 3
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 4y2−3y+2−2y2−y+1=2y2−4y+34y^2 - 3y + 2 - 2y^2 - y + 1 = 2y^2 - 4y + 3

17. x=2x = 2 āĻšāϞ⧇ 3x2−2x+13x^2 - 2x + 1 āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 99 ✅
b) 1111
c) 1313
d) 1515

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 99
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 3(2)2−2(2)+1=12−4+1=93(2)^2 - 2(2) + 1 = 12 - 4 + 1 = 9

18. āϕ⧋āύāϟāĻŋ āĻŦāĻšā§āĻĒāĻĻā§€ āϰāĻžāĻļāĻŋ āύāϝāĻŧ?
a) x2+3x−1x^2 + 3x - 1
b) 1x+2\frac{1}{x} + 2 ✅
c) 2y3−y+52y^3 - y + 5
d) 3z2+z43z^2 + z^4

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: b) 1x+2\frac{1}{x} + 2
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 1x=x−1\frac{1}{x} = x^{-1} āϝ⧇āĻ–āĻžāύ⧇ āϏ⧂āϚāĻ• āĻ‹āĻŖāĻžāĻ¤ā§āĻŽāĻ•, āϤāĻžāχ āĻŦāĻšā§āĻĒāĻĻā§€ āύāϝāĻŧ

19. (3a+2b−c)+(a−3b+2c)−(2a+b−c)(3a + 2b - c) + (a - 3b + 2c) - (2a + b - c) āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 2a−2b+2c2a - 2b + 2c ✅
b) 2a+2b−2c2a + 2b - 2c
c) 4a−2b+2c4a - 2b + 2c
d) 2a−2b−2c2a - 2b - 2c

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 2a−2b+2c2a - 2b + 2c
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 3a+2b−c+a−3b+2c−2a−b+c=2a−2b+2c3a + 2b - c + a - 3b + 2c - 2a - b + c = 2a - 2b + 2c

20. a=1,b=−2a = 1, b = -2 āĻšāϞ⧇ a2+2ab+b2a^2 + 2ab + b^2 āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 11 ✅
b) 99
c) −3-3
d) 00

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 11
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 12+2(1)(−2)+(−2)2=1−4+4=11^2 + 2(1)(-2) + (-2)^2 = 1 - 4 + 4 = 1

21. 2x3+5x2−3x+12x^3 + 5x^2 - 3x + 1 āϰāĻžāĻļāĻŋāϤ⧇ x2x^2 āĻāϰ āϏāĻšāĻ— āĻ•āϤ?
a) 22
b) 55 ✅
c) −3-3
d) 11

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: b) 55
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: x2x^2 āĻāϰ āϏāĻšāĻ— 55

22. (5p2+3pq−2q2)−(2p2−pq+q2)(5p^2 + 3pq - 2q^2) - (2p^2 - pq + q^2) āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 3p2+4pq−3q23p^2 + 4pq - 3q^2 ✅
b) 3p2+2pq−q23p^2 + 2pq - q^2
c) 7p2+2pq−q27p^2 + 2pq - q^2
d) 3p2+4pq−q23p^2 + 4pq - q^2

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 3p2+4pq−3q23p^2 + 4pq - 3q^2
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 5p2+3pq−2q2−2p2+pq−q2=3p2+4pq−3q25p^2 + 3pq - 2q^2 - 2p^2 + pq - q^2 = 3p^2 + 4pq - 3q^2

23. āϕ⧋āύ āϰāĻžāĻļāĻŋāϟāĻŋ āĻ¤ā§āϰāĻŋāĻĒāĻĻā§€?
a) 2x+32x + 3
b) x2+2x−1x^2 + 2x - 1 ✅
c) 5y5y
d) a+b+c+da + b + c + d

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: b) x2+2x−1x^2 + 2x - 1
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: āĻ¤ā§āϰāĻŋāĻĒāĻĻā§€ āĻŽāĻžāύ⧇ āϤāĻŋāύāϟāĻŋ āĻĒāĻĻāĨ¤ x2+2x−1x^2 + 2x - 1 āĻ āϤāĻŋāύāϟāĻŋ āĻĒāĻĻ āφāϛ⧇

24. x=−1,y=2x = -1, y = 2 āĻšāϞ⧇ 2x2−3xy+y22x^2 - 3xy + y^2 āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 1212 ✅
b) 1010
c) 88
d) 1414

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: a) 1212
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 2(−1)2−3(−1)(2)+(2)2=2+6+4=122(-1)^2 - 3(-1)(2) + (2)^2 = 2 + 6 + 4 = 12

25. (4x3−2x2+x−3)+(x3+3x2−2x+1)−(2x3+x2−x+2)(4x^3 - 2x^2 + x - 3) + (x^3 + 3x^2 - 2x + 1) - (2x^3 + x^2 - x + 2) āĻāϰ āĻŽāĻžāύ āĻ•āϤ?
a) 3x3+2x−43x^3 + 2x - 4
b) 3x3−43x^3 - 4 ✅
c) 3x3+2x2−43x^3 + 2x^2 - 4
d) x3+2x−4x^3 + 2x - 4

āωāĻ¤ā§āϤāϰ āĻ“ āĻŦā§āϝāĻžāĻ–ā§āϝāĻž

āωāĻ¤ā§āϤāϰ: b) 3x3−43x^3 - 4
āĻŦā§āϝāĻžāĻ–ā§āϝāĻž: 4x3−2x2+x−3+x3+3x2−2x+1−2x3−x2+x−2=3x3+0x2+0x−4=3x3−44x^3 - 2x^2 + x - 3 + x^3 + 3x^2 - 2x + 1 - 2x^3 - x^2 + x - 2 = 3x^3 + 0x^2 + 0x - 4 = 3x^3 - 4
Last updated on